
Final coursework submission

CM3035 – Report

Sébastien Lavoie

Advanced Web Development
Goldsmiths, University of London

March 27, 2022

Contents

I Meeting the requirements 3

II Running the application 11

1 Installing and running the web application 11
1.1 Accessing user accounts . 11
1.2 Running locally . 11

1.2.1 Backend . 11
1.2.2 Using Docker . 13

1.3 Local deployment . 14
1.3.1 Summary of the steps needed to deploy locally 14

III Functionality implemented 14

IV Executing the unit tests 18

V Logical approach 19

2 Frontend framework: React 19

3 React components and icons: Material UI 20

4 API: Django Rest Framework 21

5 User management: Djoser 22

6 Asynchronous communication 23

7 Deployment: Docker, Cloudflare Tunnel 24

8 Formatting: Prettier, Black, Vulture, Pylint 25

1

9 API calls: Axios 26

10 State management: Redux and Immer 27

VI Design and implementation decisions 27

VII Evaluation of the final product 29

11 What worked well 29

12 What could have been improved 31

13 State of the art in web development 33

14 References 34

2

Part I

Meeting the requirements
In order to meet all the requirements when building this application, a few
different techniques, strategies and concepts were put to good use. Firstly,
all Django views are class-based and rely on Django REST Framework to
reduce the boilerplate needed to write the views [1; 2]. One such (simple)
view is shown below:

class Profiles(APIView):
"""Used when listing all profiles at once."""

allow everyone to see all basic profiles
permission_classes = [IsOwnerOrReadOnly]

def get(self, request):
profiles = UserProfile.objects.all().order_by("-id")
serializer = ProfileSerializer(profiles, many=True)
return Response(serializer.data)

All views in turn rely on serializers to parse incoming data and to transform
it into appropriate structures that can be used internally by Django. Some
serializers are obviously more complex than others, but for demonstration
purposes and for the sake of brevity, an example of a class-based serializer is
reproduced here:

class UserPublicSerializer(ModelSerializer):
"""Serializer the User model to get back user information that can
safely be shared around in the application to other users."""

We need easy access to the profile image when listing all profiles
at once
profile_image = SerializerMethodField()

class Meta:
model = User
fields = ["id", "name", "profile_image"]

3

def get_profile_image(self, obj):
return obj.userprofile.image.url

The actual implementation details for signals, forms, URLs, other views and
components can be explored in the source code submission provided with
this report.

When it comes to version control, Git was used religiously with GitHub
to host a private repository. The Conventional Commits specification was
followed to help create meaningful commit messages [3].

Figure 1: Short extract of commits messages.

Defensive coding strategies were used, both in Python and in JavaScript. In
the backend, exceptions were raised directly where no appropriate actions
could be taken:

4

def clean_email(self):
"""Verify that the email is available."""
email = self.cleaned_data.get("email")
query_set = User.objects.filter(email=email)
if query_set.exists():

raise forms.ValidationError("email is taken")
return email

In the views, conditional statements were sprinkled everywhere where neces-
sary to avoid expansive computations (e.g., processing a profile image when
the request is invalid) and to return early from functions:

...
if profile is None:

return Response(
"Profile not found!", status=status.HTTP_404_NOT_FOUND

)

if profile.user.id != request.user.id:
return Response(

"You do not have the required permissions "
"to update this profile!",
status=status.HTTP_401_UNAUTHORIZED,

)

serializer = ProfileUpdateSerializer(profile, many=False, data=data)
if serializer.is_valid():

serializer.save()
return Response(serializer.data)

...

On the frontend, a kindred approach was used to assemble robust requests:

try {
const response = await axios.post(
`${process.env.REACT_APP_API_URL}/auth/jwt/verify/`,
body,
config,
)
if (response.data.code !== "token_not_valid") {

dispatch({
type: AUTHENTICATED_SUCCESS,

5

})
} else {

dispatch({
type: AUTHENTICATED_FAIL,

})
}

} catch (err) {
dispatch({
type: AUTHENTICATED_FAIL,
})

}

With security in mind, views were by default protected and accessible only to
authenticated users unless a statement such as the following allows all users
to read an endpoint:

permission_classes = [IsOwnerOrReadOnly]

Requirements were also exceeded by using advanced techniques and tools:
Docker [4], Docker Compose [5], Poetry [6], React [7], Redux [8], Material
UI [9] as well as setting up an SMTP backend to send emails to users were
some of the additions made to the project to prove this claim –these will be
covered in more details in later sections of this report.

While being a simple application considering time constraints and budget, the
solution brings some novelty to the table, making it a valid application that
is production-ready while also serving as an excellent prototype for a much
bigger project. Some interesting features not commonly found elsewhere
include:

• Being able to chat in real-time with all users of the platform in a time-
sensitive context in a way that supports high concurrency with Django
Channels and Redis [11; 12]. In other words, messages disappear auto-
matically after a specified delay, making for a special chat room where
one lives in the moment.

• The application allows users to easily follow others to then be able to
quickly search through their posts by filtering them. The added tweak
resides in the fact that all posts are given “total points” without “up”
or “down” counts being disclosed directly.

6

• Posts can be hidden at any time by users yet remain viewable by show-
ing the author as being anonymous.

• The colourful profile list view allows filtering of all the profiles at once
by name and shows distinctive information about users, such as the list
of people they follow or the list of people who are following them as a
non-obstrusive modal (Material UI pop-up).

As will be discussed in section 13, this solution follows best practices and
aims to represent the state of the art, both in terms of technical execution
and in the contemporary look of the final product, which is brought into the
spotlight in the following figures.

Figure 2: List of public profiles.

7

Figure 3: Displaying a single profile as the owner.

8

Figure 4: Showing the asynchronous capabilities of the chat application.

Figure 5: Posts from people being followed, shown above public posts.

9

Figure 6: Showing the ability to modify an existing post as the author.

Figure 7: Demoing the ability to search for posts of interest.

10

Part II

Running the application

1 Installing and running the web application

1.1 Accessing user accounts

All accounts are registered with the same password: pass1234$

To log in, simply use one of the following email addresses:

admin admin@gmail.com (superuser for Django admin)
Andrea andrea@gmail.com
Bob uol.grader@gmail.com
Hider hider@gmail.com (hidden profile)
Mia mamamia@gmail.com
Suliman suliman@gmail.com
Tuan tuan@gmail.com

If you set the SEND_ACTIVATION_EMAIL setting to True in the configura-
tion file socialnetwork/settings.py, emails will be sent from the account
uol.grader@gmail.com, which is a real account created to manage emails
for this application.

1.2 Running locally

1.2.1 Backend

To avoid a layer of abstraction as setting up Redis on some systems may
be more difficult, Django’s backend is used for the channels by default.
Should you require to use Redis instead, please follow the instructions in
settings.py:

CHANNEL_LAYERS = {"default": {
"BACKEND": "channels.layers.InMemoryChannelLayer"}

}

11

To use Redis locally, please comment the above line and uncomment the
following two dicts:
CHANNEL_LAYERS = {
"default": {
"BACKEND": "channels_redis.core.RedisChannelLayer",
"CONFIG": {"hosts": [("redis", 6379)]},
}
}

CACHES = {
"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": [("redis", 6379)],
"OPTIONS": {
"CLIENT_CLASS": "django_redis.client.DefaultClient"
},
}
}

Then, a simple way to get Redis running would be to launch it with Docker:

docker run -d -p 6379:6379 redis

Moving on to installing Django and the rest of the dependencies for the
backend:

cd backend

Activate a virtual environment, e.g.:
python3 -m venv .venv && source .venv/bin/activate

Install dependencies
pip install -r requirements.txt

Run the server on port 8000 with existing data
python manage.py runserver

Dependencies can also be installed with Poetry thanks to the provided files
pyproject.toml and poetry.lock with the following command:

12

poetry install

To keep the Docker image simple, pip is used to install the requirements,
although beware that Poetry’s dependency resolver will be more predictable
in a production application.

cd frontend

Install dependencies
npm install

Run the server on port 3000
npm run start

Frontend

Access the application at http://localhost:3000.

1.2.2 Using Docker

A docker-compose.yaml has been prepared to launch all the required parts
at once (Redis, Django and React).

docker-compose build
docker-compose up -d

Some other useful commands:

docker-compose down
docker-compose logs
docker-compose ps -a

This container could be set up to run in a cloud infrastructure such as Google
Cloud Platform inside a virtual machine. This setup goes above and beyond
what was taught in this module, though, therefore resources were not allo-
cated to the actual deployment.

13

http://localhost:3000

1.3 Local deployment

An alternative to the (costly and unfunded) deployment on GCP can be done
on a local machine, using Docker to containerize the application and a service
like Cloudflare Tunnel to allow traffic from the external world to reach the
application, effectively converting the machine into a server.

1.3.1 Summary of the steps needed to deploy locally

1. Buy/use a domain name and configure its DNS with Cloudflare.

2. Update Django’s settings.py to allow the domain name to reach the
Django application –avoiding CORS issue when localhost:3000 tries to
connect to localhost:8000 using that domain– (i.e. ALLOWED_HOSTS).

3. Install the CLI tool cloudflared, log in to your Cloudflare account
with cloudflared tunnel login.

4. Create a new tunnel: cloudflared tunnel create test-tunnel.

5. Route that tunnel: cloudflared tunnel route dns <T> <N>, where
<N> is the web address to use as a sub-domain and <T> is the tunnel
ID.

6. Add this sub-domain to the DNS management console in the Cloudflare
dashboard.

7. Configure Cloudflare to use the web application:

~/.cloudflared/config.yml
url: http://localhost:3000
tunnel: SOME_ID_GIVEN_BY_CLOUDFLARE
credentials-file: ~/.cloudflared/SOME_ID_GIVEN_BY_CLOUDFLARE.json

Finally, run the tunnel with cloudflared tunnel run and go to the config-
ured website at its subdomain (e.g., name.domain.com).

14

Part III

Functionality implemented
This application implements all the necessary functionality at the account
management level with Djoser. In effect, users can:

• Sign up for a new account;

• Activate their account via email upon creation (this behaviour is dis-
abled by default for convenience but can be reactivated as mentioned
earlier);

• Reset their password via email;

• Log into their account;

• Change their displayed name;

• Make their profile hidden to other users;

• Log out from their account;

• Delete their account permanently by validating their password.

User profiles provide the following features:

• Number of followers as well as a complete list of followers shown;

• Number of people that a user is following as well as a complete list of
these people;

• Number of points a user has “given” to posts they like;

• Number of points a user has “taken” from posts they dislike;

• Where the user is located;

• Each user can display a biography;

• The date at which a user joined the social network;

• The latest date at which the user updated their profile;

15

• A “status” field to prominently feature a statement, which is also shown
in the profile listing;

• A list of posts written by the user, where the owner can create new
posts, delete, edit or hide existing posts so they are no longer displayed
publicly in their profile nor in the list of public posts;

• An image gallery the user has uploaded, where the owner can add or
remove pictures;

• The ability for each user to delete their account, effectively cascading a
delete of their interactions in the application such as their posts, profile
image, etc.;

• Users can edit the information they share with others;

• To avoid profile pictures slowing down navigation –most notably in the
profile list view– all images are automatically resized to maximum 300
by 300 pixels when a user uploads a new image;

• Finally, users can also hide their profile entirely – doing so will then
mark all their posts as being anonymous and they will not be reachable
by any other user of the network.

Following the “profile” view, the “profile list” view (linked with the text
“Meet” in the navigation bar) shows all public profiles with most of the
information users share. To view the details of a profile (such as a birth date
and the date of the last edit of a user), it is necessary to be authenticated,
otherwise unauthenticated users will be redirected back to the “profile list”
view and an error alert will be flashed. Additionally, the number of followers
and people users are following are displayed right from the list view and allow
to click to retrieve a complete list of people who are followed. The different
icons shown on this page really pop out: the more followers a user has, the
bigger the number of people shown in the actual icon representation; also,
an icon indicating a value of “0” is slighly greyed out for readability and to
let users know they won’t be able to interact with these icons.

As a distinctive mark of interest, everything belonging to a user is marked
with a fingerprint icon: when a user views their own profile or posts, they
will be able to quickly identify that this information is theirs as long as they
are logged in.

16

Posts implement a basic editing view and allow their author to hide them.
Furthermore, posts receive and lose points based on the opinions of users
in the network and will end up with positive or negative scores, similar to
what Reddit and Stack Overflow have done but without splitting the count
in either direction [13; 14].

The “Read” page –to be found in the navigation bar– shows posts from
people users follow at the top, allowing to filter the content of posts based
on their interests. The total number of points is shown next to each post
entry. As a section section on that page, users have the ability to see a list
of public posts as well as search for keywords of interest, just like in the first
section just described.

On any page that gets longer than 500 pixels when scrolling down, there will
be a little arrow icon allowing users to swiftly glide to the top of the page.

When clicking on the avatar icon displayed in the top-right corner of the
application, a “drawer” (in Material UI’s terms [9]) will open to allow users
to quickly jump to their profile and to log out of the application.

Behind the scenes, administrators and superusers can be created with full
privileges to modify and delete other accounts. These special accounts will
be hidden by default from the public-facing frontend, although their profile
can later be made public and used as any other account on the website.

Last but not least, there is a public chat room where all users of the applica-
tion can go to have a spontaneous discussion. In fact, the web application is
programmed to automatically discard messages that are older than 20 sec-
onds (by default), allowing users to share special moments that are very much
unique and time-limited while avoiding being overwhelmed by content. In
the event that a constant flow of messages might be entering the chat room at
a given time, users will still have the ability to scroll up in the view (assuming
they read fast enough). If they do not scroll up, the view will always focus
on the latest incoming message so their attention span will be maintained on
this very moment. Every time a user reloads the page or goes somewhere else
in the application, the content of the chat window will disappear on purpose,
because good discussions are meant to happen in real-time on this website.
Users will not be distracted by anything else other than a little avatar icon
and people’s names so they can know at a glance who is interacting with
them... but they will need to have a good memory to remember everything.

17

After all, the idea behind this chat application really is to exchange some
good thoughts in the moment. What lives on is only the memory of time
well spent with others.

At the API level, users can interact with the application directly via API
endpoints, provided they send their authentication token should a view have
a requirement in this regard. These endpoints are listed succinctly below,
but a file openapi-schema.yml has been provided in the backend directory
for a complete reference.

accounts/ profiles/
accounts/ profiles/<int:user_id>
accounts/ profiles/<int:user_id>/image
accounts/ profiles/<int:pk>/followers
accounts/ profiles/<int:pk>/followers/add
accounts/ profiles/<int:pk>/followers/remove
accounts/ profiles/gallery/add
accounts/ profiles/gallery/remove/<int:gallery_pk>
accounts/ ^media/(?P<path>.*)$
api/ posts/<int:pk>/
api/ posts/author/<int:pk>/
api/ posts/<int:pk>/up/
api/ posts/<int:pk>/down/
api/ posts/<int:pk>/pointsby/
api/ posts/

Part IV

Executing the unit tests
To run the unit tests, it is a matter of activating a virtual environment (as
described in section 1.2) and using the built-in test command provided by
Django in the following manner, which must be run from within the backend
directory:

$ python manage.py test
Found 119 test(s).
Creating test database for alias 'default'...

18

System check identified no issues (0 silenced).
..
--
Ran 119 tests in 0.584s

OK
Destroying test database for alias 'default'...

Part V

Logical approach

2 Frontend framework: React

The application was designed with the goal in mind of having a modern
frontend framework relying on an excellent CSS framework to provide icons
and other components. Speaking of components, React was chosen for its
strong focus on designing small components that can be reused. Taking
advantage of this approach, some components such as the “profile intro”
(the box showing the main information regarding a user profile) are literally
displayed on different pages, such as when viewing a single profile or when
viewing a list of profiles.

Similarly, a “post” entry represents the exact same React component when
viewed in isolation or when browsing for many more posts. When search
bars are used, these share the same characteristics and behaviors across the
page while managing a different state.

19

3 React components and icons: Material UI

On the design side, the presentation of the website was made much more con-
sistent with the help of Material UI, which provides many ready-made React
components. The whole application was built around the concept of adding
building blocks from Material UI such as a “box”, “button” or “typography”
to guarantee that all aspects of the application look homogeneous and with
the same modern style.

Components such as a “drawer” and a “navbar” really sped up development
and were expected to be used extensively right from the start.

20

4 API: Django Rest Framework

Since the use of Django was mandatory for the backend part of this work,
Django REST framework was an ideal choice considering the need for an
API to be directly accessible to end-users and to benefit from an easy-to-use
toolkit to build an API that can be accessed from React without breaking a
sweat.

Django REST Framework simplifies data serialization and even allows dealing
with nested serialization in a straightforward way. Because it comes with
powerful features for authentication and permission management, it was also
a great option for this specific use case which depend easily on these sets
of features which would arguably be very complex, error-prone and time
consuming to implement manually.

21

5 User management: Djoser

Beyond Django’s default user management system, there was a desire to
extend the default behaviour, for instance to use an email address instead
of a username to authenticate users. Djoser makes these changes and much
more a lot more simple, adding easy management of logins, logouts, password
confirmation resets, activation emails and so forth.

By leveraging Django’s built-in features with Djoser, the user model can be
extended with ease and flexibility.

22

6 Asynchronous communication

To build the chat application, Channels and WebSocket [15] were considered
as one of the best combination of libraries because they are simple to use and
allow high concurrency to be possible. Channels makes it easy to create an
asynchronous WebSocket consumer to deal with many users connecting to
possibly many different groups: it is therefore an ideal option for a growing
social network.

The WebSocket library in JavaScript is then used to communicate with Chan-
nels via the WebSockets technology, sending and receiving messages with
additional payload to extend the functionality of the chat application.

23

7 Deployment: Docker, Cloudflare Tunnel

To deploy an application to production, Docker Compose is a robust and
reliable solution, especially for this use case where different microservices
can be pieced together seamlessly, sharing resources across a single network
on different ports.

Docker makes it possible to containerize parts of the application (i.e., the
backend, frontend and in-memory cache database) to be run potentially on
many virtual machines in the cloud and Docker Compose makes the process
of orchestring an application such as this one much more accessible than
configure web servers from start to finish.

Poetry, a package and dependencies management system for Python, allows
requirements to be pinned to specific versions and ensures reproducibility is
achieved, which is critically important when it comes to deploying to pro-
duction. Its dependencies resolver is much more reliable when the exactitude
of a list of requirements must be met.

In terms of deploying a real application on a small scale, Cloudflare Tunnel
[16] was also considered as it is useful to share prototypes during development
and to instantly deploy a local server. Furthermore, it can work hand in
hand with Docker Compose and Poetry since a container can be run in the
background and the application can be exposed on multiple ports locally
without having to configure firewalls.

Because pip is traditionally used in the Python world to manage require-
ments, the command pip freeze was used to generate a standard list of
pinned dependencies, although for an actual deployment to production, an
open source alternative like Poetry would likely be preferable.

24

8 Formatting: Prettier, Black, Vulture, Pylint

While code formatting is of utmost importance for readability, it is also a
tremendous waste of time to try to do it manually. For this reason, multiple
tools were used to aid with this gargantuan task. Prettier [17] was used on
the frontend side to format everything related to JavaScript and CSS.

On the backend side, Black [18] was the primary formatter used. Its use
was complemented with Pylint [19], which helps to clean up and refactor the
code by finding hard-to-spot warnings, such as unnecessary return statements
or the use of more complex expressions when an equivalent such as a list
comprehension could be used.

Finally, to keep the code tidy and alive, Vulture [20] was used to find “dead”
code not in used anywhere else. Even if code is well formatted, code that is
not needed become a liability. In the source code world, less really is more.

25

9 API calls: Axios

The Axios [21] JavaScript library was used for the attractiveness and flexibil-
ity of its API. Because it supports fully the Promise API and allow making
asynchronous calls with the async/await syntax, it makes for a good tool to
communicate with the backend. It has extensive documentation and excellent
support on various web platforms including GitHub, which is an important
consideration when thinking about deploying an application in the real world.

There are new and shiny technological options all the time, but a battle-
tested software like Axios remain a competent tool apt for the job.

26

10 State management: Redux and Immer

Despite the Context API from React being powerful and easy to use, Redux
and Immer [22] really make dealing with state management a breeze. Redux
on its own is one of the best in its category to provide state management at
scale: its documentation is also fantastic and detailed and its popularity on
Stack Overflow is only a plus in its favour should there be a need to fix issues
while using it (because there will inevitably be such a need). The Redux
workflow with actions being dispatched with types makes sense and adding
new features is very fast without having to change existing pieces of states
when combining reducers.

One possible drawback of using plain Redux to manage the store is that
states can be mutated and unexpected consequences may ensue. For this
reason, Immer was included so that dealing with a Redux store is stripped
down to a direct object assignment, where Immer takes care of updating
items and even nested items as needed.

Part VI

Design and implementation
decisions
Because deployment with Docker was a primordial concern, the application
was built with a backend that is completely decoupled from a frontend. In
fact, with just a little bit of ingenuity, Django could be swapped entirely
with another web framework as long as the same endpoints are provided
to the frontend with the necessary technologies (such as web sockets) being
implemented. In a similar way, the frontend, which is built primarily with
React, could be upgraded to another popular alternative such as Vue.js. This
gives flexibility and should there be a greater need for optimization once the
social network takes off for a real spin, there is the possibility to bundle
React with Django by building minimized versions of the assets and shipping
everything as a Docker container that can be run on powerful machines in

27

the cloud.

Beyond this original concern, more concrete decisions were taken. For in-
stance, Django signals were used to simplify how user profiles are created.
Instead of allowing users to create a profile from their user account, the ex-
perience was unified by transparently automating this process whenever a
user account is created such that it is attached to a newly created profile
associated with it. Leaving the option to the end-user of manually creating
a profile could be confusing at best and lead to unexpected results at worst,
where user accounts and user profiles IDs become out of sync, which is a nice
side-effect of having them created as well as deleted at the same time.

From the start, Djoser was chosen to override specific built-in functions per-
formed by Django and to facilitate email management. To integrate Djoser
with the administrative bits of the application –namely, the Django admin
interface– Django forms were used to customize how users are to be registered
as well as superusers and staff accounts. By overriding the user creation, it
is now possible to update parts of the process with simple configuration vari-
ables implemented by Djoser, such as forcing users to retype their passwords
or not.

With Django models, the base model became a UserAccount, which allow
users to join the network. However, the functionality related to account man-
agement is kept separate from other features of the application by interfacing
with the accounts using a UserProfile model on which a user field exist. In
turn, this model integrates other parts of the models, such as many-to-many
relationships with followers and a gallery image model, which is also linked
as a many-to-many relationship. Another part of the application implements
a Post model where the author field corresponds to a UserAccount, effec-
tively linking a different part of the application to the user accounts. Again,
a Post then interfaces with other models to take points into account, which
are also linked to user profiles.

To manage all kinds of POST requests as well as to guarantee that mod-
els communicate as expected between each other, serializers using Django
REST framework features were used in the process. These generally use a
SerializerMethodField to define more complex behaviors, such as getting
all non-hidden followers for a single profile.

Views were implemented with DRF APIView, bridging the gap between a

28

RESTful API and the ability to define simple views using methods like get
and delete. Views rely on serializers and specify a permission_classes list
of custom values, which were implemented separately in a permissions.py
file. This allows customizing the default behavior so that by default all views
require authentication unless explicitly stated otherwise by these permission
classes. This is also more secure, preventing users from inadvertently being
able to access what should have been protected resources.

In terms of API definition, simplicity was key: every endpoint regarding
authentication is accessed under /auth while our specific implementation of
user accounts is accessed under /accounts. Additionally, all endpoints to
deal with user posts are to be found with an endpoint starting with /posts.
Finally, there is another set of endpoints to work with profiles, these being
accessible under /profiles.

The Django chat application, due to its asynchronous nature, uses different
technologies behind the scenes, including notably WebSockets. Channels was
chosen to implement this portion because it extends Django’s capabilities
beyond HTTP and is ideally suited for chat applications like the one being
built as part of this social network.

Part VII

Evaluation of the final product

11 What worked well

Opting for React made for a flexible framework that behaves extremely well
with Django. React has complete documentation and extensive support of-
fered on different medium, making it ideal for a robust and complex web
application. Coupled with Material UI, the frontend aspect of the work was
taken care of and didn’t need particular attention when developing. For any
basic functionality that was not available out of the box in JavaScript, the
Lodash library was used to make object comparisons and such much more
readable and understandable when multiple conditions were being evaluated

29

in a JSX expression, often with ternary operators.

The state was managed beautifully with Redux and the Redux Devtools web
browser extension, allowing for rapid iterations and feedback where debug-
ging would otherwise become very cumbersome. The useState hook was
used profusely to separate concerns as well.

Keeping with React, the application was divided into logical sections that
made it easy to add new features. Small components were created for dif-
ferent parts of the application, Redux actions and reducers were stored in
their respective directories, containers and other higher-order components
were given a special place in the frontend hierarchy, utility functions were
well organized and accessible, pages and custom hooks also had their own
place to reside.

Deploying with Docker remained a clean process, where a single Dockerfile
was created to power the backend and another Dockerfile added for the
frontend. Finally, all these instructions were put together with a readable
docker-compose.yaml file, which purpose was to join all the different con-
tainers in a single place and to allow adding more microservices, such as
Redis. Postgres was not used in this version for practical reasons when shar-
ing the source code of the web application with others, but only a few steps
would need to be taken to update Django’s settings file as well as pulling
from DockerHub a suitable image to run Postgres.

Testing with Django went particularly well: the documentation had a clear
guide about testing and any aspect of the application –serializers, views,
models, forms, consumers, signals and so on– were tested according to the
Django standards, leading to a whopping total of 119 passing unit tests,
which are to be found inside a tests directory inside each Django application
within the project.

30

12 What could have been improved

Planning of the technical stack could have gone much better. During the
experimentation phase in the early steps of this project, good portions of
functionality were implemented using Django templates without any frontend
framework, except for the CSS framework Bootstrap. Features such as user
notifications, personal messaging between two users with the ability to use
different “inboxes” and “threads” was a very good selling point of the first
version of this web application. Alas, due to time constraints, these useful
additions were left behind (preserved with a Git history) but did not manage
to make it to the final product. It would have been much more productive
to take a closer look at the panoply of requirements to be implemented from
the very beginning and determining the best fit as early as possible to avoid
rewriting code from one framework to another.

Although Redux was a lifesaver in many circumstances, it was also a hur-
dle in terms of productivity because of its complexity and different moving
parts. Being more careful to not use Redux at all costs everywhere possible,
dispatching updates in the application would surely be simplified with the
Context API using pure React or even some useEffect hooks, which were
used profusely with good results. Immer was also introduced a bit later in the
thought process when dealing with nested JSON objects. Although it made
the remaining development easier, it was also probably a red flag meaning
that the Redux store could have been simplified into smaller reducers where
different selectors could access parts of the store that wouldn’t need to be
nested objects. This may also indicate a flaw in the way models were imple-
mented, but most likely there were errors made when dispatching messages
in a part of the Redux store that really should belong somewhere else. In
concrete terms, dispatching an event regarding users inside the “user” reducer
was probably more complicated than simply dealing with all notifications in
a different reducer. In actuality, this led to some dispatch actions that did
more than one thing, which is not ideal when thinking about the concept of
separation of concerns.

Although this is not perceptible in the final product, Django migrations were
at times a pain to work with. This is because the models weren’t thought
through very well at the beginning and despite the iterative process being
an inherent part of software development, iterating over models in Django

31

definitely counts as an exception to the rule where clearly defined models will
not cause migrations to break or need to be modified in any way. It would
have been more productive to produce well-designed diagrams, depicting the
architecture of the application as well as the complete schema of the database
to avoid surprises down the road.

32

13 State of the art in web development

On a technical aspect, many parts of this web application conform to modern
web standards. The latest stable release versions of libraries were used when-
ever convenient and/or possible. This non-exhaustive list would include, at
the time of this writing, React 17.0.2, Redux 4.1.2, WebSocket 1.0.34 and
Material UI 5.5.0 for the frontend. On the backend, Django 4.0.3, Channels
3.0.4, Djoser 2.1.0 and Redis 4.2.0 were used.

When dealing with dependencies, Poetry was used with great benefit to make
sure that Docker containers could be deployed reliably. Using Docker and
Docker Compose was another touch that was added since most contempo-
rary software will ship with a Docker solution for convenience. An excellent
example in this regard would be PlantUML, a Java-based application to gen-
erate diagrams from textual descriptions that can be deployed in only a few
seconds via Docker, launching a local server with the full capabilities offered
by the piece of software in question. Nowadays, with Docker containers be-
ing more secure and very fitting for a deployment to the cloud at most big
technology companies, it really is a best practice adopted by good software
teams to work with containerized versions of their products.

The wider community was consulted in an effort to bring the maximum qual-
ity possible to the end result. Concretely, advice was taken from prominent
figures in the web development world, including Dennis Ivanov and Laith
Harb [23; 24], both Django and React experts and Corey Schafer, an accom-
plished software developer from the Python world [25]. Nigel Poulton [26]
–author of Docker Deep Dive– served as a good reference for the deployment
part. Real Python was a godsend with its in-depth articles, for instance
about debugging code with Pdb [27]. Less well-known yet high-quality con-
tent producers inspired work with Djoser and the implementation of user
posts, including Bryan Dunn [28] and Legion Script [29]. Cloudflare was also
one of the best resources used to deploy a secure web server locally and to
learn about JSON web tokens and their use specifically with Python [30].
Needless to say, the official documentation from each major framework and
tool was referenced all way through, many names which are going to sound
familiar by now –Django REST Framework, React, Redux, Immer.js, Django,
Djoser, Channels, etc.

33

14 References

[1] Django, The web framework for perfectionists with deadlines, https:
//www.djangoproject.com/. Accessed March 26, 2022.

[2] Django REST Framework, A powerful and flexible toolkit for build-
ing Web APIs, https://www.django-rest-framework.org/. Accessed
March 26, 2022.

[3] Conventional Commits, A specification for adding human and
machine readable meaning to commit messages, https://www.
conventionalcommits.org/en/v1.0.0/. Accessed March 26, 2022.

[4] Docker, Build safer, share wider, run faster, https://www.docker.com.
Accessed March 27, 2022.

[5] Docker, Overview of Docker Compose, https://docs.docker.com/
compose/. Accessed March 27, 2022.

[6] Poetry, Python dependency management and packaging made easy,
https://python-poetry.org/. Accessed March 27, 2022.

[7] React, A JavaScript library for building user interfaces, https://
reactjs.org/. Accessed March 27, 2022.

[8] Redux, A Predictable State Container for JS Apps, https://redux.js.
org/. Accessed March 27, 2022.

[9] Material UI, The React UI library you always wanted, https://mui.com.
Accessed March 26, 2022.

[10] Djoser, djoser’s documentation, https://djoser.readthedocs.io/en/
latest/getting_started.html. Accessed March 26, 2022.

[11] Django Channels, Django Channels’ documentation, https://
channels.readthedocs.io/en/stable/. Accessed March 27, 2022.

[12] Redis, Open source, in-memory data store, https://redis.io/. Ac-
cessed March 27, 2022.

[13] Reddit, Dive into anything, https://www.reddit.com. Accessed March
26, 2022.

34

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
https://www.docker.com
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://python-poetry.org/
https://reactjs.org/
https://reactjs.org/
https://redux.js.org/
https://redux.js.org/
https://mui.com
https://djoser.readthedocs.io/en/latest/getting_started.html
https://djoser.readthedocs.io/en/latest/getting_started.html
https://channels.readthedocs.io/en/stable/
https://channels.readthedocs.io/en/stable/
https://redis.io/
https://www.reddit.com

[14] StackOverflow, Where Developers Learn, Share, & Build Careers,
https://stackoverflow.com. Accessed March 26, 2022.

[15] WebSocket, WebSocket API, https://developer.mozilla.org/en-
US/docs/Web/API/WebSocket. Accessed March 27, 2022.

[16] Cloudflare Tunnel, Protect your web servers from direct attack, https:
//www.cloudflare.com/products/tunnel/. Accessed March 27, 2022.

[17] Prettier, Opinionated Code Formatter, https://prettier.io/. Ac-
cessed March 27, 2022.

[18] Black, The uncompromising Python code formatter, https://black.
readthedocs.io/. Accessed March 27, 2022.

[19] Pylint, code analysis for Python, https://pylint.org/. Accessed
March 27, 2022.

[20] Vulture, Find dead Python code, https://github.com/jendrikseipp/
vulture. Accessed March 27, 2022.

[21] Axios, Promise based HTTP client for the browser and node.js, https:
//axios-http.com/docs/intro. Accessed March 27, 2022.

[22] Immer, Immutability the easy way, https://immerjs.github.io/
immer/. Accessed March 26, 2022.

[23] Dennis Ivanov, Lead developer, https://www.dennisivy.com/. Ac-
cessed March 26, 2022.

[24] Laith Harb, Full-stack developer, https://laithharb.com. Accessed
March 26, 2022.

[25] Corey Schafer, Software developer, https://leanpub.com/
dockerdeepdive. Accessed March 26, 2022.

[26] Nigel Poulton, Docker Deep Dive, https://leanpub.com/
dockerdeepdive. Accessed March 26, 2022.

[27] Real Python, Python Debugging With Pdb, https://realpython.com/
python-debugging-pdb/. Accessed March 26, 2022.

[28] Bryan Dunn, Web developer, https://www.youtube.com/channel/
UCf_Y89gbkB1bJGkmqiQIAnQ. Accessed March 26, 2022.

35

https://stackoverflow.com
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://www.cloudflare.com/products/tunnel/
https://www.cloudflare.com/products/tunnel/
https://prettier.io/
https://black.readthedocs.io/
https://black.readthedocs.io/
https://pylint.org/
https://github.com/jendrikseipp/vulture
https://github.com/jendrikseipp/vulture
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://immerjs.github.io/immer/
https://immerjs.github.io/immer/
https://www.dennisivy.com/
https://laithharb.com
https://leanpub.com/dockerdeepdive
https://leanpub.com/dockerdeepdive
https://leanpub.com/dockerdeepdive
https://leanpub.com/dockerdeepdive
https://realpython.com/python-debugging-pdb/
https://realpython.com/python-debugging-pdb/
https://www.youtube.com/channel/UCf_Y89gbkB1bJGkmqiQIAnQ
https://www.youtube.com/channel/UCf_Y89gbkB1bJGkmqiQIAnQ

[29] Legion Script, Web development Courses, https://www.legionscript.
com/. Accessed March 26, 2022.

[30] Cloudflare, JSON web tokens, https://developers.cloudflare.com/
cloudflare-one/identity/users/validating-json. Accessed March
26, 2022.

36

https://www.legionscript.com/
https://www.legionscript.com/
https://developers.cloudflare.com/cloudflare-one/identity/users/validating-json
https://developers.cloudflare.com/cloudflare-one/identity/users/validating-json

	I Meeting the requirements
	II Running the application
	Installing and running the web application
	Accessing user accounts
	Running locally
	Backend
	Using Docker

	Local deployment
	Summary of the steps needed to deploy locally

	III Functionality implemented
	IV Executing the unit tests
	V Logical approach
	Frontend framework: React
	React components and icons: Material UI
	API: Django Rest Framework
	User management: Djoser
	Asynchronous communication
	Deployment: Docker, Cloudflare Tunnel
	Formatting: Prettier, Black, Vulture, Pylint
	API calls: Axios
	State management: Redux and Immer

	VI Design and implementation decisions
	VII Evaluation of the final product
	What worked well
	What could have been improved
	State of the art in web development
	References

